По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Единый адрес для всех регионов: asr@nt-rt.ru || http://argoil.nt-rt.ru/

ВЫЧИСЛИТЕЛЬ РАСХОДА AT-8850

Руководство оператора

AT.8850.2014 PO

Версия документа 0.1.1

Вычислитель расхода AT-8850

AT.8850.2014 PO

	Соде	ржание:	
1	Описание интерфейса программного обеспечения панели оператора		
	1.1	Структура окон оператора	4
	1.2	Окно приветствия	4
	1.3	Окно «О системе»	4
	1.4	Основное окно программы.	4
	1.5	Калибровка «0» массомеров	10
	1.6	Ограничение прав доступа. Смена пароля	11
	1.7	Окно «Настройки регулирования»	11
	1.8	Окно «Настройки»	13
	1.9	Окно «ТМ»	15
	1.10	Окно «Настройка 1»	16
	1.11	Меню «Настройки SD»	17
	1.12	Архив измерений	18
	1.13	Окно «Системные события».	20
	1.14	Окно «Настройка пробоотборника»	20
2	Алго	ритм регулирования	22
	2.1 P	учное управление регулятором	22
	2.2	Автоматическое регулирование по перепаду давления	22
	2.3	Автоматическое управление по уровню жидкости	23
3	Назн	ачение DIP переключателей	26

Настоящее руководство предназначено для операторов, работающих с вычислителем расхода AT-8850 (далее по тексту — контроллер или AT-8850), входящим в состав установок измерительных ССМ (далее по тексту — установки или УИ ССМ).

К работе с установками допускаются лица с техническим образованием не ниже среднего и прошедшие инструктаж по технике безопасности.

ВНИМАНИЕ. ПЕРЕД НАЧАЛОМ РАБОТЫ С КОНТРОЛЛЕРОМ ВНИМАТЕЛЬНО ИЗУЧИТЕ НАСТОЯЩУЮ ИНСТРУКЦИЮ.

Предприятие-изготовитель заинтересовано в получении технической информации о работе установки и возникших неполадках с целью устранения их в дальнейшем. Все пожелания по совершенствованию конструкции установки следует направлять в адрес предприятия-изготовителя.

1 Описание интерфейса программного обеспечения панели оператора

1.1 Структура окон оператора

Программный интерфейс системы вычисления расхода нефти представляет собой набор окон, переход между которыми осуществляется последовательно. Структура окон представлена на рисунке 1.

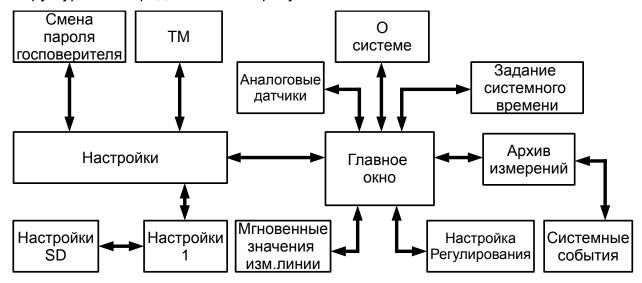


Рисунок 1 – Структурная схема ПО панели оператора

1.2 Окно приветствия

Окно приветствия появляется после включения питания панели оператора и через 5 секунд сменяется главным окном. В окне приветствия отображается наименование системы, логотип фирмы-производителя и системное время.

1.3 Окно «О системе»

В окне «О системе» указана информация о текущей версии программного обеспечения терминальной панели и программного обеспечения системы, наименование системы, логотип фирмы-производителя и контактные данные службы технической поддержки. В данное окно можно перейти, нажав кнопку «О системе» в основном окне программы (см. рис.3 поз.7). Для возврата в основное окно необходимо нажать кнопку перехода (см. рис.2 поз.1).

1.4 Основное окно программы

Основное окно программы служит для осуществления контроля текущего состояния системы по цифровым индикаторам измерительной информации, а также индикаторам аварий.

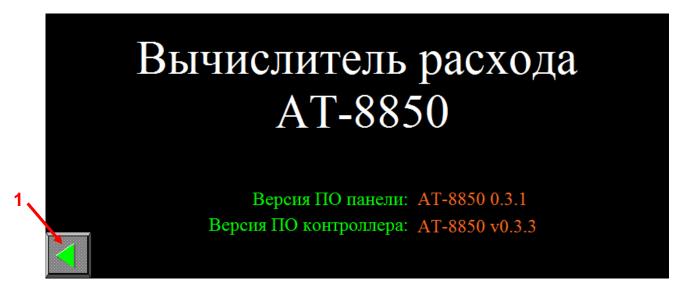


Рисунок 2 – окно «О системе»

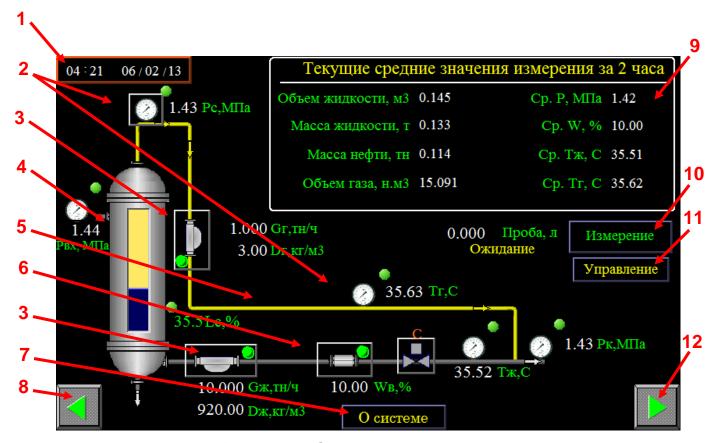


Рисунок 3 – Основное окно программы

Основное окно программы включает в себя следующие элементы (попозиционно в соответствии с рис.3):

1) Текущее время системы и кнопка вызова меню задания времени (см. рис. 4). Меню задания времени защищено паролем оператора. После задания времени необходимо нажать кнопку «Сохранить».

Рисунок 4 – экран задания времени системы

2) Элемент отображения аналоговых датчиков температуры и давления, отображающих температуру газа, жидкости и давления в сепараторе и в коллекторе. Мгновенные значения показаний выводятся на экран справа от элемента отображения. По нажатию на элемент открывается окно «Аналоговые датчики», в котором отображаются текущие показания всех аналоговых датчиков (давление в сепараторе, давление на коллекторе, уровень в сепараторе, температура жидкости, температура газа, перепад на фильтре) (см. рис.5).

Рисунок 5 – Окно «Аналоговые датчики»

3) Элемент отображения показаний массомеров жидкости и газа. Возле элемента отображаются значения массового расхода в тн/ч и плотности в кг/м³. Версия ПО панели: v0.3.1 Руководство оператора AT-8850

По нажатию на элемент открывается окно «Настроек параметров массомера» для жидкости и газа соответственно.

Рисунок 6 – Настройки основного массомера жидкости

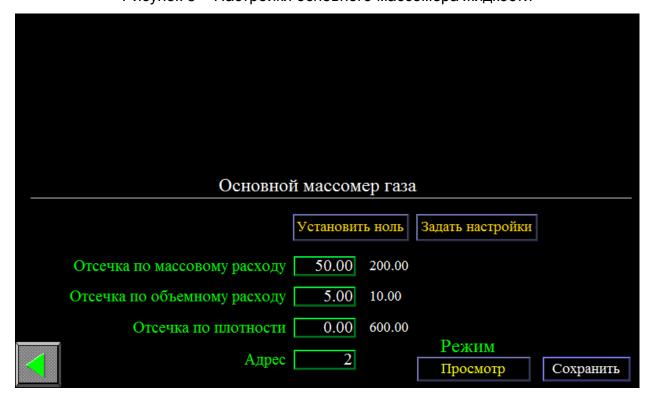


Рисунок 7 – Настройки основного массомера газа

В окне «настроек массомера» задается настройки: отсечка по массовому и объемному расходу, отсечка по плотности, адрес массомера. При этом размерности отображаемых параметров устанавливаются автоматически в зависимости от настроек подключенных расходомеров. Кнопка «Установить ноль» (рис. 6, поз.1) служит для калибровки нуля массомера. Порядок калибровки «0» массомеров подробно описан в п.1.5. Кнопка «Задать настройки» используется для применения настроек в массомер.

- 4) Элемент отображения показаний датчика уровня в сепараторе. Показания отображаются в главном окне визуально в виде заполняющейся вертикальной линейки, а также справа от линейки в процентном содержании (параметр Lc, %).
- Элемент отображения состояния задвижек. В открытом состоянии элемент отображается зеленым цветом, в закрытом состоянии – желтым, в режиме остановки серым. Над задвижками отображаются символы, отображающие команду регулятора, которую выполняет задвижка. Символ «О» сообщает о процессе открытия и отображается зеленым цветом, символ «3» сообщает о процессе закрытия и отображается желтым цветом, символ «С» сообщает о процессе остановки, отображается оранжевым цветом. По нажатию на элемент открывается ОКНО «Настройки регулирования». Процесс регулирования описывается в разделе 4 данной инструкции оператора.
- 6) Элемент отображения состояния и показаний влагомера сырой нефти. Возле элемента отображается показание обводненности сырой нефти. При нажатии на элемент открывается окно «Показания и настройки влагомера». Слева отображаются мгновенные показания влагомера: обводненность, температура, установленные во влагомере коэффициенты. Справа можно задать адрес влагомера (1), коэффициенты влагомера (2). Коэффициенты влагомера записываются во влагомер по нажатию кнопки «Задать настройки» (3).

Рисунок 8 – Показания и настройки влагомера

- 7) Кнопка перехода в окно «О системе».
- 8) Кнопка перехода в окно «Настройки».
- 9) Область отображения текущих и средних значений, накопленных за 2 часа измерения.

Накопительные параметры, отображаемые в данной области:

- Объем жидкости, м³ в Р.У;
- Объем нефти, м³ в Р.У.
- Масса нефти, тн;
- Объем газа, н.м³ в Н.У.

Средние значения за последние 2 часа:

- Среднее давление в сепараторе, Р, МПа;
- Средняя обводненность, W, % в Р.У.;
- Средняя температура жидкости, Тж, °С;
- Средняя температура газа, Тг, °С.
- Кнопка отображения состояния системы. Надпись на кнопке может принимать значения:
 - Измерение режим измерения;
 - Авария режим аварийного состояния;

В режиме аварии по нажатию на кнопку открывается окно, в котором отображается тип аварийной ситуации:

- «Периферия не отвечает!!!» нет связи с массомером жидкости;
- «Аварийное давление!!!»;
- «Требуется очистить фильтры»;
- «Ошибка переключения клапана жидкости»;
- «Ошибка переключения клапана газа».
- 11) Кнопка «Управление». По нажатию на кнопку открывается окно управления началом измерения. Окно открывается по паролю оператора. По нажатию на кнопку «Начало измерения» обнуляются все текущие измерения.
 - 12) Кнопка перехода в окно «Архив измерений».

1.5 Калибровка «0» массомеров

ВНИМАНИЕ. КАЛИБРОВКА НУЛЯ ПРОИЗВОДИТСЯ ТОЛЬКО ПРИ РАБОЧЕМ ДАВЛЕНИИ В СЕПАРАТОРЕ. МАССОМЕР ДОЛЖЕН БЫТЬ ЗАПОЛНЕН ИЗМЕРЯЕМОЙ СРЕДОЙ.

При проведении калибровки рекомендуется придерживаться следующей последовательности действий:

- 1) Убедитесь, что массомер жидкости заполнен жидкостью. Условие отсутствия попадания газа стабильные неизменяющиеся показания плотности жидкости, равные лабораторной плотности сухой нефти или выше;
- 2) Убедитесь, что массомер газа заполнен газом. Условие отсутствия попадания жидкости показание плотности газа должно быть соразмерно давлению в сепараторе, измеренное в кгс/см². Например, при давлении 12-13 кгс/см² значение плотности газа должно быть не более 14-15кгс/см².
- 3) Отсечь вход и выход сепаратора (исключить расход через массомеры).
- 4) Выждать 20 минут.
- 5) Нажать на панели кнопку «Установить ноль» соответствующего массомера (рис.6, поз.1).
- 6) Выждать 2 минуты.
- 7) Открыть выход сепаратора, перевести потоки на измерительную линию.

1.6 Ограничение прав доступа. Смена пароля.

В программе панели оператора существует ограничение прав доступа к настройкам системы, калибровке и настройке массомеров, принудительному заданию настроек влагомера и кнопке управления запуском измерений. По умолчанию пароль наладчика установлен в значение «101». Пароль изменяется в меню изменения пароля наладчика (см. рис.9), вызываемом по нажатию кнопки «Изменить пароль наладчика» в окне «Настройки». Для смены в открывшемся окне необходимо ввести новый пароль и нажать кнопку «Задать пароль».

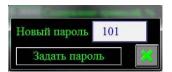


Рисунок 9 – окно смены пароля наладчика

1.7 Окно «Настройки регулирования»

Окно «Настройки регулирования» (см. рис.10 открывается по нажатию на изображение клапана на мнемосхеме основного окна.

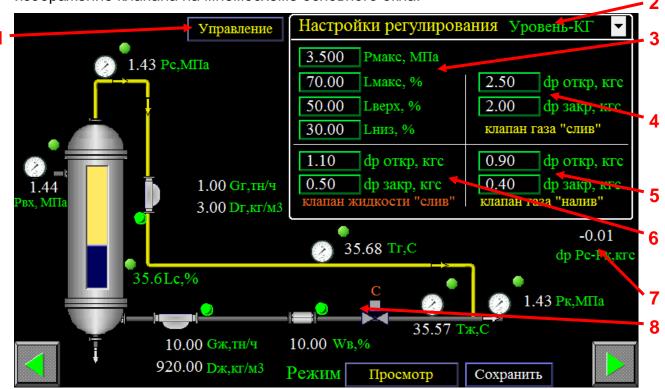



Рисунок 10 – Окно «Настройка регулирования»

В верхней части окна расположена область настройки регулирования (2).

Существует три режима регулирования — автоматическое регулирование по перепаду давления в коллекторе и сепараторе (Авто), ручное управление (Ручной), регулирование по уровню (Уровень–КГ). Выбор режима регулирования выбирается из всплывающего меню.

В поле настроек регулятора расположены 4 группы параметров:

- Общие настройки (рис.10, поз.3):
 - максимальное давление в сепараторе, Рмакс, МПа;
 - максимальный уровень в сепараторе, Lмакс, %;
- Настройки регулятора уровня (рис.10, поз.3):
 - верхняя граница уровня, Lверх, %;
 - нижняя граница уровня, Lниз, %;
- Настройки регулятора по перепаду давления в режиме «Налив» (рис.10, поз.5):
 - уставка перепада давления, по которому открывается Кг, dp откр, кгс;
 - уставка перепада давления, по которому закрывается Кг, dp закр, кгс;
- Настройки регулятора по перепаду давления в режиме «Слив» (рис.10, поз.4,
 6):
 - уставка перепада давления, по которому открывается Кг, dp откр, кгс;
 - уставка перепада давления, по которому закрывается Кг, dp закр, кгс;
 - уставка перепада давления, по которому открывается Кж, dp откр, кгс;
 - уставка перепада давления, по которому закрывается Кж, dp закр, кгс;

Под областью настройки регулятора располагается область отображения текущего перепада давления между сепаратором и коллектором (рис.10, поз.7).

1.8 Окно «Настройки»

Внимание! От значений параметров установленных в окне «Настройки» зависит результат измерения. Редактирование параметров осуществляется только специалистом компании-производителя системы или лицом имеющим допуск к работе с контрольно-измерительными приборами на объекте, где эксплуатируется система.

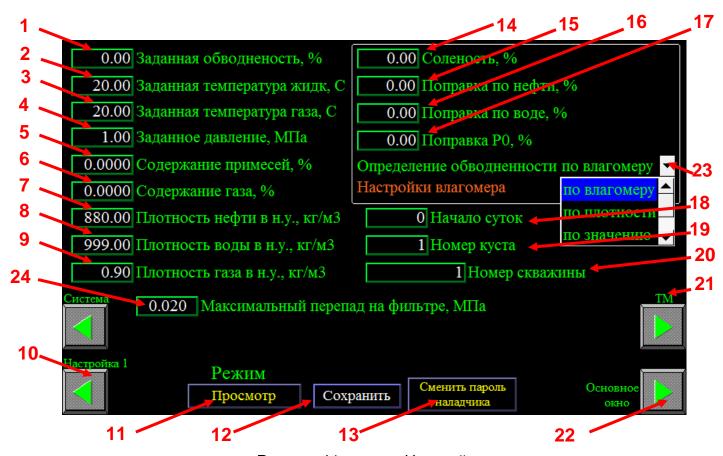


Рисунок 11 – окно «Настройки»

Окно «Настройки» позволяет просматривать и редактировать основные параметры системы. Окно включает в себя следующие элементы (попозиционно в соответствии с рис.11):

- 1) Элемент задания режимного значения объемной влажности нефти, используемого для расчетов при отсутствии влагомера.
- 2) Элемент задания режимного значения температуры жидкости, используемого для расчетов при отсутствии датчика температуры.
- 3) Элемент задания режимного значения температуры газа, используемого для расчетов при отсутствии датчика температуры.
- 4) Элемент задания давления в сепараторе, используемого для расчетов при отсутствии датчика давления.

- 5) Элемент задания лабораторного значения массового содержания примесей в %.
- 6) Элемент задания лабораторного значения объемного содержания газа в %.
- 7) Элемент задания плотности нефти в нормальных условиях, в кг/м3.
- 8) Элемент задания плотности воды в нормальных условиях, в кг/м3.
- 9) Элемент задания плотности газа в нормальных условиях, кг/м3.
- 10) Кнопка «Настройка 1» предназначена для перехода в меню настройки датчиков температуры и давления.
- 11) Кнопка выбора режима работы окна. При отображении на кнопке надписи желтого цвета «Просмотр» окно находится в режиме просмотра параметров, и их изменения недоступны. После нажатия на кнопку «Просмотр» окно переходит в режим редактирования параметров, и на кнопке появляется надпись красного «Редактирование». Для применения отредактированных настроек необходимо перевести окно В режим просмотра нажатием на кнопку «Редактирование».
- 12) Кнопка «Сохранить» служит для сохранения отредактированных значений параметров в энергонезависимую память контроллера.
- 13) Кнопка «Сменить пароль наладчика» служит для смены пароля обслуживающего персонала системы.
- 14) Элемент настройки влагомера сырой нефти задание солености жидкости по результатам лабораторных исследований.
- 15) Элемент настройки влагомера сырой нефти задание поправки по нефти, %.
- 16) Элемент настройки влагомера сырой нефти задание поправки по воде, %.
- 17) Элемент настройки влагомера сырой нефти задание поправки коэффициента Р0,%.
- 18) Элемент задания времени начала отчетных суток.
- 19) Элемент задания номера куста, на котором установлена система.
- 20) Элемент задания номера скважины, на которую установлена система.
- 21) Кнопка «ТМ», предназначенная для перехода в окно сетевых настроек системы для доступа телемеханики.
- 22) Кнопка «Основное окно» предназначена для перехода в основное окно панели.
- 23) Поле выбора режима определения обводненности:

- обводненность по влагомеру (в данном режиме значение обводненности считывается с влагомера);
- обводненность по плотности (в данном режиме значение обводненности рассчитывается косвенным методом по показаниям канала плотности массомера жидкости);
- обводненность по значению (в данном режиме значение обводненности берется из настроек контроллера).

Внимание! Если в режиме «обводненность по влагомеру» будет отсутствовать связь с влагомером система автоматически будет использовать в расчетах заданное значение обводненности.

1.9 Окно «ТМ»

В окне «ТМ» производится настройка сетевых параметров вычислителя расхода для подключения к нему систем телемеханики по протоколам ModbusRTU и ModbusTCP. Для ModbusRTU настраиваются адрес прибора, порядок байт, смещение и скорость передачи. Для ModbusTCP настраиваются IP-адрес прибора, маска подсети, порт, адрес устройства Modbus, порядок байт и смещение. Внешний вид окна настройки сетевых параметров вычислителя расхода представлен на рисунке 12.

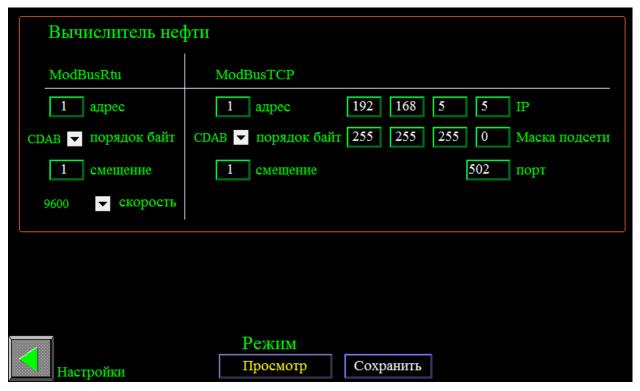
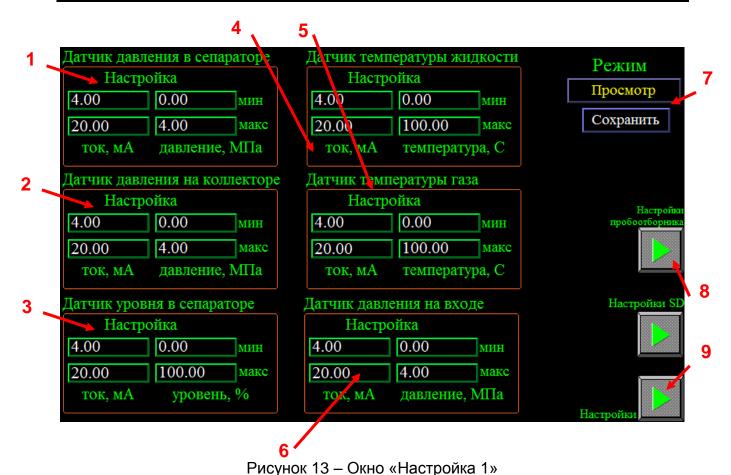



Рисунок 12 – окно настройки сетевых параметров вычислителя расхода

1.10 Окно «Настройка 1»

Меню «Настройка 1» (см. рис.13) позволяет просматривать и редактировать параметры измерительных датчиков системы. Окно «Настройка 1» включает в себя следующие элементы (попозиционно в соответствии с рис. 13):

- 1) Блок настройки предельных значений и масштабирования показаний датчика давления в сепараторе;
- 2) Блок настройки предельных значений и масштабирования показаний датчика давления на коллекторе;
- 3) Блок настройки предельных значений и масштабирования показаний датчика уровня в сепараторе;
- 4) Блок настройки предельных значений и масштабирования показаний датчика температуры жидкости;
- 5) Блок настройки предельных значений и масштабирования показаний датчика температуры газа;
- 6) Блок настройки предельных значений и масштабирования показаний датчика давления на входе;
- 7) Кнопка смена режима «Просмотр» «Редактирование» и кнопка «Сохранить»;
- 8) Кнопка перехода в окно настройки пробоотборника;
- 9) Кнопка возврата в меню «Настройки»;

FUCYHOR 13 - ORHO «HACI

1.11 Меню «Настройки SD»

Меню «Настройка SD» предназначено для просмотра объема занятой и свободной памяти на SD-носителе, который устанавливается в панель оператора. В меню имеется две кнопки. Кнопка «Удалить файлы графиков» (поз.1, рис.14) предназначена для очистки SD-карты. Кнопка «Обновить информацию (поз.2. рис.14) предназначена для обновления информации о размере занятой и свободной памяти в данный момент. По нажатию на кнопку внизу экрана (поз.3 на рис.14) происходит переход в окно «Настройка 1».

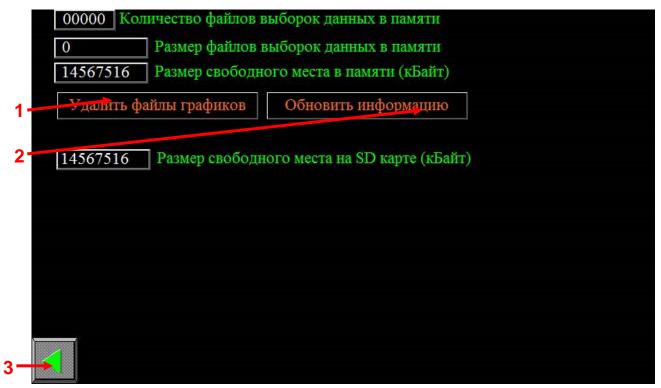


Рисунок 14 - Окно «Настройка SD»

1.12 Архив измерений

Окно «Архив» позволяет просматривать измеренные параметры, сохраненные с начала включения системы. Доступ к архиву осуществляется из главного окна. Количество сохраняемых страниц — 32000. В случае переполнения архива, перезаписываются по кругу более старые значения.

Окно «Архив» включает в себя (попозиционно в соответствии с рис.15):

- 1) Значения массы жидкости, объема жидкости при рабочих условиях, массы нефти, объема газа при нормальных условиях, плотности жидкости и газа, давления, температуры жидкости и газа, средней влажности в рабочих условиях измеренные за 2 часа.
- 2) Значения массы жидкости, объема жидкости при рабочих условиях, массы нефти, объема газа при нормальных условиях, плотности жидкости и газа, давления, температуры жидкости и газа, средней влажности в рабочих условиях измеренные за последние 24 часа с начала суток.
- 3) Номер куста, на котором производились измерения;
- 4) Номер скважины, на которой производились измерения;
- 5) Кнопка возврата в основное окно программы;
- 6) Дата и время окончания измерения;
- 7) Количество записанных страниц памяти;
- 8) Номер текущей страницы. Для выбора нужной страницы необходимо либо ввести ее номер с экранной клавиатуры (нажатием на текущий номер), либо

- использовать кнопки «+» и «-» для прибавления-убавления номера страницы.
- 9) Индикатор особого события. В случае, если в период 2х часов выбранной записи происходили особые события, то кнопка изменяет надпись с «Норма» на «Описание замера». По нажатию на кнопку «Описание замера» отображается окно с произошедшими в период двухчасовой записи событиями:
 - Старт системы;
 - Старт нового измерения;
 - Суточные данные;
 - Изменение времени;
- 10) Кнопка перехода к окну «Системные события»

Рисунок 15 - Окно «Архив значений»

1.13 Окно «Системные события»

Окно «Системные события» (рисунок 16) позволяет просматривать системные и программные события, происходившие в системе, такие как «Старт системы» и «Изменение времени». В архив записываются дата времени и тип события. Для просмотра событий необходимо либо пользоваться кнопками «+» и «-» для выбора страницы, либо вводить номер нужной страницы вручную с экранной клавиатуры.

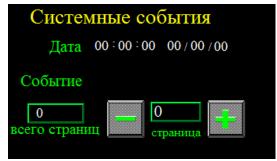


Рисунок 16 - окно «Системные события»

1.14 Окно «Настройка пробоотборника»

Окно «Настройка пробоотборника» (рисунок 17) позволяет настраивать параметры пробоотборника.

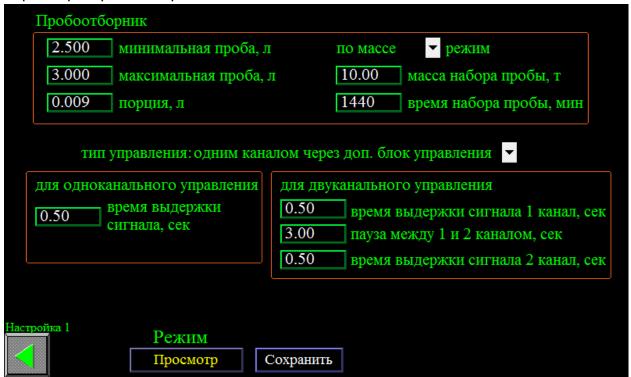


Рисунок 17 - окно «Системные события»

Пробоотборник может набирать пробу в двух режимах: по массе и по времени.

Режим «по времени».

Входные данные:

- время, за которое требуется набрать пробу Т_{пробы} [мин];
- минимальное и максимальное значение объема пробы V_{min} и V_{max} [литр];
- значение объема порции при однократном отборе пробы $V_{
 m порции}$ [литр];

При подаче команды «старт пробы» контроллер рассчитывает период подачи управляющего сигнала на пробоотборник по следующей формуле :

$$T_{
m период} = rac{T_{
m пробы}}{V_{
m пробы}} \cdot V_{
m порции}$$

где
$$V_{\text{пробы}} = \frac{V_{min} + V_{max}}{2}$$
 — средний объем пробы.

Контроллер выдает управляющий сигнал на пробоотборник с рассчитанным периодом, контролируя при этом наличие расхода жидкости в линии. После отработки управляющего сигнала контроллер прибавляет объем порции к внутреннему счетчику текущей пробы. Система продолжает отрабатывать алгоритм пока объем набираемой пробы не станет равным или большим $V_{\rm пробы}$.

Режим «по массе».

Входные данные:

- масса жидкости, пройденная через расходомер, за которую требуется набрать пробу - М_{пробы} [т];
- минимальное и максимальное значение объема пробы V_{min} и V_{max} [литр];
- значение объема порции при однократном отборе пробы $V_{\text{порции}}$ [литр];

При подаче команды «старт пробы» контроллер рассчитывает порцию массы жидкости, которая должна пройти через расходомер для подачи управляющего сигнала на пробоотборник по следующей формуле:

$$\mathbf{M}_{\mathrm{период}} = \frac{\mathbf{M}_{\mathrm{пробы}}}{V_{\mathrm{пробы}}} \cdot V_{\mathrm{порции}}$$

где
$$V_{
m пробы} = rac{V_{min} + V_{max}}{2} -$$
 средний объем пробы.

Контроллер выдает управляющий сигнал на пробоотборник, как только через расходомер пройдет очередная порция жидкости $M_{\text{период}}$. После отработки управляющего сигнала контроллер прибавляет объем порции к внутреннему счетчику текущей пробы. Система продолжает отрабатывать алгоритм пока объем набираемой пробы не станет равным или большим $V_{\text{пробы}}$.

Управляющий сигнал пробоотборника может быть двух типов: одноканальный или двухканальный.

Управление с помощью одного канала используется при наличии дополнительного блока управления пробоотборника. В данном случае используется только время выдержки управляющего сигнала.

В случае отсутствия блока управления пробоотборника можно использовать два канала для прямого воздействия на механизм пробоотборника. Первый канал используется для подачи команды на ввод отбирающего устройства в поток нефтепровода, второй канал используется для подачи команды на вывод отбирающего устройства.

2 Алгоритм регулирования

2.1 Ручное управление регулятором

В ручном режиме управления регулятором оператором вручную через меню управления подаются команды открытия, закрытия и остановки задвижек. Для этого необходимо выбрать режим регулирования (рис.8 поз.2), перейти в режим «Редактирование» и нажать на изображение соответствующего клапана, которым планируется управлять (рис.8, поз.8). По нажатию открывается окно управления соответствующим клапаном жидкости (см. рис.18).

Рисунок 18 – окно управление краном жидкости

По нажатию на кнопку «+» кран начинает открываться, по нажатию на кнопку «■» останавливается, а по нажатию на кнопку «-» - закрывается.

2.2 Автоматическое регулирование по перепаду давления

Автоматическое регулирование по перепаду давления осуществляется путем алгоритма трехпозиционного регулирования. В окне настройки выбирается тип регулятора «Авто» и задаются уставки, а также аварийные значения максимального давления и максимального уровня жидкости. По достижению аварийных значений открываются оба крана — газа и жидкости. Алгоритм работы регулятора по перепаду давления представлен на рисунке 19.

2.3 Автоматическое управление по уровню жидкости

Управление по уровню осуществляется клапанами жидкости и газа по уставкам верхнего и нижнего уровня. При повышении уровня жидкости более уставки Lверх клапан газа закрывается, а клапан жидкости открывается. При снижении уровня жидкости менее уставки Lниж клапан газа открывается, а клапан жидкости закрывается. Между уставками Lниж и Lверх клапаны остановлены. При превышении уровня жидкости значения Lmax и давления в сепараторе выше Ртах происходит открытие клапанов жидкости и газа. Алгоритм управления по уровню жидкости представлен на рисунке 20.

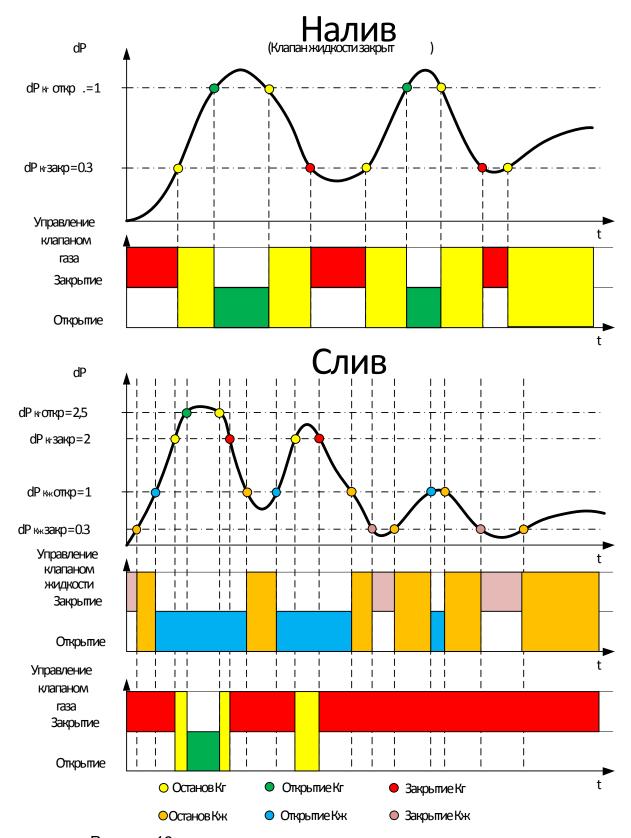


Рисунок 19 – алгоритм регулирования по перепаду давления

Управление по уровню

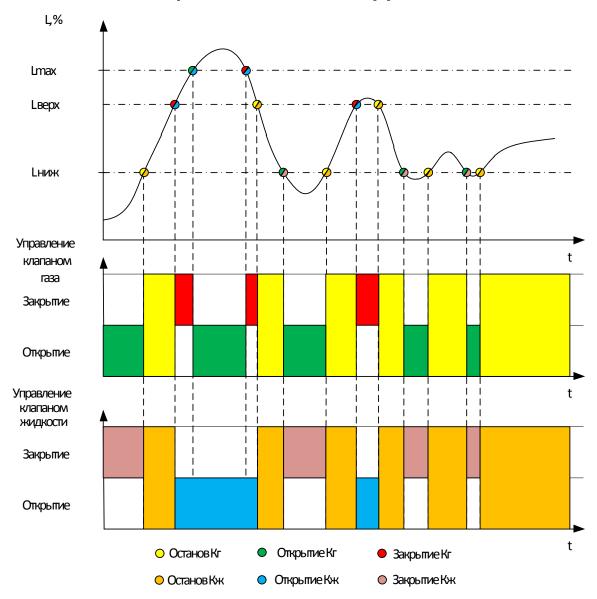
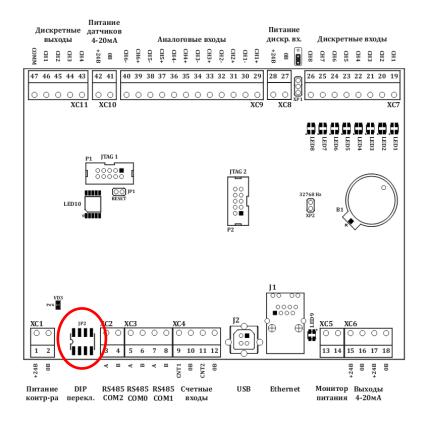



Рисунок 20 – алгоритм регулирования по перепаду давления

стр.25

3 Назначение DIP переключателей

На плате контроллера расположены 4 DIP переключателя для инициирования дополнительных функций при старте системы. Нумерация слева направо.

DIP переключатель №1 – инициирует старт загрузчика контроллера для обновления ПО.

DIP переключатель №2 – инициирует сброс сохраненного журнала событий в контроллере.

DIP переключатель №3 – инициирует сброс архива измерений в контроллере.

DIP переключатель №4 – устанавливает все настройки контролера на заводские.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48

Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78

Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Единый адрес для всех регионов: asr@nt-rt.ru || http://argoil.nt-rt.ru/